CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department
Boston University

Lecture 05: Programming with Functions

o Functions as First-Class Values

Examples of functional programming: Map and Filter
Lambda Expressions

Functions on functions

Modules

o O O O

Reading: Hutton Ch. 4, beginning of Ch. 7

Programming with Functions

In functional programming, we want to treat functions as “first-class values,” i.e.,
having the same “rights” as any other kind of data, i.e, functions, like data, can be

passed as parameters
stored in data structures
represented as values without having to assign to a name.

O O O O

manipulated by other functions to create new functions

In most programming languages, functions are not treated in this way, but we
will find that in Haskell this is pursued to the greatest extend possible.

This opens up a world of possibilities for algorithms that are not possible in other
languages; often these algorithms are more concise and elegant than in other
languages. Of course this is a matter of taste! We will at least explore this
possibility, and add to your toolkit of possibilities for programming, and you
make up your mind after the course is over!

Functional Programming Paradigms

Let us first consider what it would mean to allow functions to be passed as
parameters... suppose we wanted to increment every member of an Integer list:

data List a = Nil | Cons a (List a) deriving Show

incr :: Integer —> Integer
incr x = x + 1

incrList :: List Integer —> List Integer
incrList Nil = Nil
incrList (Cons x xs) = (Cons (incr x) (incrList xs))

Main> incrlList (Cons 3 (Cons 5 Nil))
Cons 4 (Cons 6 Nil)

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

Functional Programming Paradigms

Then later we want to test every member of a list to see
if it is even:

isEven :: Integer —> Bool
isEven x = mod x 2 == 0
isEvenList :: List Integer —> List Bool

isEvenList Nil = Nil
isEvenList (Cons x xs) = (Cons (isEven x) (isEvenlList xs))

Main> isEvenlList (Cons 3 (Cons 5 Nil))
Cons False (Cons False Nil)

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

Functional Programming Paradigms

Hm... these look similar:

incr :: Integer -> Integer
incr x = x + 1 I I
incrList :: List Integer -> List Integer
incrList Nil = Nil
incrlList (Cons x xs) = (Cons (incr x) (incrlList xs))
isEven :: Integer -> Bool
isEven x =
mod x 2 == 0
isEvenlList :: List Integer -> Lisf Bool
isEvenlList Nil = Nil v
isEvenlList (Cons x xXxs) = (Cons (isEven x) (isEvenlList xs))

What to do? Clearly, we should write a function that keeps the common elements
and abstracts out the differences using parameters/variables.

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

Functional Programming Paradigms

But to abstract out the common core of this paradigm, and make parameters of the
differences, we have to

o Parameterize the types using polymorphism and type variables

o Parameterize the function by allowing a function to be passed as a

parameter.
isEven :: Integer -> Bool
isEven x = mod x 2 ==
isEvenList :: List Integer -> List Bool
isEvenlList Nil = Nil
isEvenlList (Cons x xXxs) = (Cons (isEven x) (isEvenlList xs))
map :: (a -> b) -> List a -> List b

map £ Nil = Nil
map £ (Cons x xs) = (Cons (f x) (map f xs))

O p’rlSSCd as parameters

Functional Programming Paradigms S ented as vabums without having 0 esign t & aame.

o manipulated by other functions

Map is a common function and is defined in the Prelude (with built-in lists):

map :: (a -> b) -> List a -> List b
map £ Nil = Nil
map £ (Cons x xs) = (Cons (f x) (map f xs))

Main> map incr (Cons 3 (Cons 5 Nil))
Cons 4 (Cons 6 Nil)

Main> map times2?2 (Cons 3 (Cons 5 Nil))
Cons 6 (Cons 10 Nil)

YV V V V VY

map ())

iiéiiié

o passed as parameters
o stored in data structures

Fu n Ctio n a]_ Pr O gram m i ng P aradigm S o represented as values without having to assign to a name.

o manipulated by other functions

Ok, here is another common paradigm: filter a list by only allowing elements that
satisfy some predicate (Boolean test):

isEven :: Integer —> Bool
isEven X = mod X 2 ==

filterEvenList :: List Integer —> List Integer

filterEvenList Nil = Nil

filterEvenList (Cons x xs) | isEven x
| otherwise

(Cons x (filterEvenList xs))
(filterEvenList xs)

Main> filterEvenList (Cons 2 (Cons 3 (Cons 4 Nil)))
Cons 2 (Cons 4 Nil)

(@] p'dSSCd as parameters
o stored in data structures

Fu n Ctio n a]_ Pr O gram m i ng P aradigm S o represented as values without having to assign to a name.

o manipulated by other functions

We abstract out the common core of this algorithm to obtain another common
function defined in the Prelude:

isEven :: Integer —> Bool
isEven x = mod x 2 ==

filterEvenList :: List Integer —> List Integer

filterEvenList Nil = Nil

filterEvenList (Cons x xs) | isEven x
| otherwise

(Cons x (filterEvenList xs))
(filterEvenList xs)

filter :: (a —> Bool) —> List a —> List a
filter p Nil = Nil
filter p (Cons x xs) | p x

| otherwise

(Cons x (filter p xs))
(filter p xs)

Main> filter isEven (Cons 2 (Cons 3 (Cons 4 Nil)))
Cons 2 (Cons 4 Nil)

Functional Programming Paradigms

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

So we have demonstrated the first in our list of desirable features for functional
programming: Functions can be

O

O
O
O

passed as parameters

stored in data structures

manipulated by other functions

represented as values without having to assign to a name.

How about storing in data structures? No problem in Haskell:

Suppose we want to apply a list of functions to a list of values?

Cons 1

Cons 3

Cons 4

ncr (Cons times2 (Cons decr Nil)) incr :: Integer —> Integer
incr x = x + 1
(Cons 4 (Cons 9 Nil)) decr :: Integer —> Integer
decr x = x - 1
(Cons 8 (Cons 8 Nil)) times2 :: Integer —> Integer

times2 x = X * 2

Functional Programming Paradigms

O O O O

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

This is not a standard Prelude function, but easy to write!

Of course it should be polymorphic:

applyList :: List (a —> b) —> List a —> List b

applyList Nil _ = Nil
applyList = Nil = Nil

applyList (Cons f fs) (Cons x xs) = Cons (f x) (applyList fs xs)

Main> funcList = (Cons incr (Cons times?Z

(Cons decr Nil)))

Main> argList = (Cons 4 (Cons 5 (Cons 9 Nil)))

Main> applyList funclList arglList
Cons 5 (Cons 10 (Cons 8 Nil))

incr :: Integer —> Integer
incr x = x + 1

decr :: Integer —> Integer
decr x = x - 1

times2 :: Integer —> Integer
times2 x = x * 2

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

Functional Programming Paradigms

And then there is nothing to prevent us from manipulating functions like we
would any other “value” that gets stored in a data structure:

Main> funcList = (Cons incr (Cons times?2 (Cons decr Nil)))

Main> argList = (Cons 4 (Cons 5 (Cons 9 Nil)))

Main> head (Cons x) = x This is just a consequence of

Main> tail (Cons xs) = xs referential transparency: the meaning
of an expression is unchanged if we

Main> f = head funcList replace a subexpression by an

Main> f 8 equivalent subexpression.

9

Main> applyList (tail funcList) (tail arglList)
Cons 10 (Cons 8 Nil)

Main> ((head (tail funcList)) (last arglList))
18

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

Lambda Expressions in Haskell

o O O O

Ok, onward! How do we deal with the “value” of a function separate from a
identifier bound to a value?

3 (Cons 5 Nil) ‘a’ “Hi there”
Main> x = 3
Main> 1lst = (Cons 5 Nil)
Ordinary data values don’t HAVE to have a name: they exist separately from
names, and are bound to a name when necessary. This is absolutely necessary

during ordinary programming: we pass values to functions without having to name
them (unless they enter the function):

Main> 1incr 4
5

Can we treat functions the same way? Well, in Haskell, of course you can.... (also
in Pvthon)....

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

Lambda Expressions in Haskell

o O O O

Haskell allows you to write lambda expressions to represent the computational
content of a function separate from its name. What's left? The list of parameters
and the body of the function! These are sometimes called anonymous functions,
but the term lambda expressions is standard:

\<parameter> -> <body of function>

Main> f = \x -—> x + 1

Main> f 4
5
Main> (\x vy z -> x + y*z) 3 4 5
23
Main> (\x —> x + ((\y —> vy * 2) 6)) 10
22
script.py
Perhaps you have seen this in Python: 1 # Program to show the use of lambda functions
2
3 double = lambda x: x * 2
Or math notation: M Output: 10
AX . ox+1 6 print(double(5))

Lambda Expressions in Haskell

One very useful feature of Haskell lambda expressions is that you can use patterns
as the “bound variable,” but you have to watch out for non-exhaustive

patterns, which will cause a warning!

Main> (\ (Pair x y) -> x + y) (Pair 3 4)

7
Main> (\ (Cons x xs) -> 2*x) (Cons 2 (Cons 3 (Cons 4)))

<interactive>:135:2: warning: [-Wincomplete-uni-patterns]

Pattern match(es) are non-exhaustive
In a lambda abstraction: Patterns not matched: Nil

Lambda Expressions in Haskell

One of the main uses of such anonymous functions is to avoid the use of
separately-defined “helper functions” in functions such as map and filter:

Main> map (\x -> x + 1) (Cons 2 (Cons 3 (Cons 4 Nil)))
(Cons 3 (Cons 4 (Cons 5 Nil)))

Main> filter (\x -> mod x 2 == 0) (Cons 2 (Cons 3 Nil))
(Cons 2 Nil)

or in any place where the name of a function is not really the point:
Main> funclist = (Cons (\x -> x + 1) (Cons (\z -> z * 2) Nil))

Main> applylList funcList (Cons 2 (Cons 5 Nil))
(Cons 3 (Cons 10 Nil))

Higher-order Programming Paradigms Reading: Hutton Ch. 7.5

Functions can be manipulated by other functions/operators to create new
functions. In mathematics the most common such operator is function
composition:

f ° g (X) - f(g(x)) | a _—x-—‘_—_;/-: 1_—_—_———r—>@ \

,"’ b~ L o _-"T'““t-* 4 Ily'l

Function composition in Haskell: | e 3T |
\ d—f— 4/)

\ ‘__A ///“ l"\\\ /// \ 7 ‘/,

incr x = x + 1 — N—

timesZ2 x = x * 2

plusltimes?2 = timesZ ._1ncr

Main> incr 2

3 Function composition operator in
Main> timesZ 3 Haskell is the period.
6

Main> plusltimes?2 2
6

Higher-order Programming Paradigms Reading: Hutton Ch. 7.5

There are many other functions which manipulate functions in useful ways... Here
are a couple of my favorites!

—— exchange the order of arguments
- = for a binary function

flip :: (a => b -> ¢c) -=> (b -> a -> ¢)
flip £ = \y x -> f x vy

Main> exp = flip (")
Main> exp 2 3
9

Higher-order Programming Paradigms Reading: Hutton Ch. 7.5

Function slices allow you to apply a binary infix function to one argument, leaving the other
as a parameter:

Main> times2 = \x -> x * 2
Main> times2 4
8

Main> times3 = (*3)
Main> times3 4
12

Main> (*2) ((1+) 06)

14

Main> add0 = (append 0)

Main> addO (Cons 2 (Cons 4 Nil))
(Cons 2 (Cons 4 (Cons 0 Nil)))

Main> map (div: 2) (Cons 4 (Cons 7 Nil))
Cons 2 (Cons 3 Nil)

Modules

“A Haskell module is a collection of related functions, types and typeclasses. A
Haskell program is a collection of modules where the main module loads up the

other modules and then uses the functions defined in them to do something. Having
code split up into several modules has quite a lot of advantages. If a module is

generic enough, the functions it exports can be used in a multitude of different programs.
If your own code is separated into self-contained modules which don't rely on each
other too much (we also say they are loosely coupled), you can reuse them later on.

It makes the whole deal of writing code more manageable by having it split into

several parts, each of which has some sort of purpose.” — Learn You a Haskell

Using modules

import Prelude -- Import everything from the module Prelude
-- If you have no imports, Prelude is imported
-- by default.

import Prelude (Show,undefined) -- Import ONLY Show and undefined

import Prelude hiding (map, filter) -- Import everything EXCEPT map and filter

Modules For now, just remember to put all modules in the

same directory as the code where they will be
Creating modules imported.....

Use the following syntax in the first line of your file to create a module; the
name must be the same as the file (without the .hs):

-l

{leoce
DEExB o xmBW

module Test where

Test.hs

—— this module allows anything defined in the module to be
—— visible outside the module.

- Test.hs

| ® ®
DeEExB9 $HDhNR

module Test (map, filter) where

—— this module only allows map and filter to be visible outside the module

There is no way to hide only some names from being exported from a module. You
have to list the names you DO want to export. You can only using the keyword
hiding in an import statement.

- ——— e e A | = WP, BN B | PO Y BN, - W SSRGS - f

Modules

For now, just remember to put all modules in the same directory as the code where they
will be imported.....

Insert Design Transitions Animations Slide Show Review View Acrobat Shape Format

2 b - .) v TA=] .
DEEx09 Y HBE B. = o =
module Test where = m}omﬁt&ﬁ;
—— this module allows anything defined in the module to be Shape Opt
—— visible outside the module.
H *
Sl M Searchresul X | €8 hwo1 x

[Jdecr x

incr x = x + 1

x -1

[1 of 2] Compiling Test
-:—— Test.hs Top L10 (Haskell) | [of 2] Compiling Main

Begi“"ﬁﬂ?ﬂff%b“fff{ 0k, two modules loaded.

- |

-B/Library/Frameworks/GHC.framework

(Test.hs, interpreted)
(Main.hs, interpreted)

De@8xdes B

import Prelude
import Test

test = incr 5

[*¥Main> incr 8
9

[*Main> decr 10
9

[*Main> test

6

*Main> ||

o Main.hs

| {dule; here's an example for a module whos

] Homeworks and Labs
o9 E[ﬂ] ol EEv v i) Q 3V Q_ Search

[NN)
‘ <
Favorites

=i @) AirDrop
#>; Applications
¢ iCloud Drive
0 Downloads
£ Recents

Name Date Modified 2.2.1. [Because of the where keyword, layo

B Tesths Today at 12:24 P; 1e is the same as that of the type; this is allo'

B Main.hs Today at 12:24 P . X
ne module keyword is omitted, all of the names bc

ote that the name of a type and its constructors hav
sible. The names in an export list need not be local

Main.hs~ Feb 4, 2019 at1

& hwO2problems.hs Feb 3, 2019 at 1
Project.txt Feb 1, 2019 at 2

» [HuttonExams Feb 1, 2019 at 1:{
Tact hen Fah1 2010 at 10

Modules

For now, just remember to put all modules in the same directory as the code where they
will be imported.....

@ lest.n _
v

DeExHe DR IR =ARP ISR e R
module Test where Convert to Picture Shapes Text Arrange
SmartArt Box

—— this module allows everything declared in this
—- file to be visible to any file that imports it.[]

incr x = x + 1
decr x = x - 1 ime directory as the code where tt
| W
[NON Homeworks and Labs — ghc -B/Library/Frameworks/GHC.framework/V
6
*Main> incr2 5
J 7
) : *Main>
)) *Main> :r
D & E x @ % DB @ | [2 of 2] Compiling Main (Main.hs, interpreted)
import Prelude Ok, two modules loaded.
import Test (incr) *Main>
*Main> incr 4
5
decr x = x - 2[] *Main> decr 5
3
*Main> [
ule; here's an example for a module whos:
—:——— Main.hs Top L5 (Haskell) - — T 5m .
|

(No changes need to be saved)

wday at 2:09 PM 69 bytes Ha:

Modules

For now, just remember to put all modules in the same directory as the code where they

will be imported.....

DeEx0e B

module Test where

incr x = x + 1

decr x x -1

DeEeExHe sDhHR

import Prelude
import Test hiding (decr)

]

decr x = x — 2

E~ S ‘ ‘. v [A=] N .
|
Co Picture Shapes Text Arrange Qu
Smart/ Box Styl

—— this module allows everything declared in this
—— file to be visible to any file that imports it.[]

:me directory as the code where they

[NON J Homeworks and Eabs — ghc -B/Library/Frameworks/GHC.framework/Vers

[*Main> :r

[2 of 2] Compiling Main (Main.hs, interpreted)

#JOk, two modules loaded.

*Main> incr 4
5

*Main> decr 5
3

*Main>
*Main>
[*Main>
*Main>
[*Main>
Main> [

I ! ! : :uln: here's an example for a module whos:

4\ Annlicatinne

—-i——— Main.hs Top L4 (Haskell) 22
Wrote /Users/snyder/Dropbox (BOSTON UNIVERSITY)/Documents/Teaching/CS320/We= | T— <1 s Kind
sb/Homeworks and Labs/Main.hs
) AITUTOp — wday at 2:10 PM 76 bytes Haskel
o lﬁ [g Test.hs Today at 2:07 PM 165 bytes Haskel

Modules: Qualified Imports

“There is an obvious problem with importing names directly into the namespace of module.
What if two imported modules contain different entities with the same name? Haskell solves

this problem using gualified names. An import declaration may use the qualified keyword to
cause the imported names to be prefixed by the name of the module imported. These prefixes
are followed by the *." character without intervening whitespace.”

— https://www.haskell.org/tutorial/modules.html

DEExHY s0BHR

module Test where[]

—— visible outside the module.

incr x = x + 1

1

x
|

=

decr x

DeEExHe sHbhHR

import Prelude
import qualified Test

incr x = x + 2

‘ 0

—t——— Main_hc Ton 1A (Hacke11)

—— this module allows anything defined in the module to be

T E— G
pres X E hw01 X o Spring-20 X all Gradescol %
O GitHub Instructors CS Dept Forms » B .

drt list need not be local to the exporting module; any name in s¢

® @® Homeworks and Labs — ghc -B/Library/Frameworks/GHC.framework/Versions/8.2.2-x8

*Main> decr 9

<interactive>:262:1: error:
Variable not in scope: decr ::

KMain> :r

[1 of 2] Compiling Test

[2 of 2] Compiling Main

0Ok, two modules loaded.

*Main> incr 5

7

KMain> Test.incr 5

6

Main> I

———

very use. Others prefer short names and only use qualifiers -

Integer —> t

(Test.hs, interpreted)
(Main.hs, interpreted)

Modules: Qualified Imports with Loocal Names

bex|j<9;ﬁ;qjﬁ?j@ ‘“rex €S hwo1 x| ©

module Test where[]

—-— this module allows anything defined in the module to be € GitHub Instructors EI CSC

—— visible outside the module. drt list need not be local to the e
incr x = x + 1
decr x = x -1
@® (] Homeworks and La‘bs — ghc -B/Library/Frameworks;
*Main> incr 5
7
*Main> Test.incr 5
N 6
Y= *Main> :r
= xHe DB [2 of 2] Compiling Main (Main.hs, inte
import Prelude 0k, two modules loaded.
import qualified Test as T[] *Main>
*Main>
incr X = X + 2 *Main>
*Main> T.incr 5
6
#Main> [
—:——— Main.hs Top L2 (Haskell) |veryuse.0thersprefersho
Wrote /Users/snyder/Dropbox (BOSTON UNIVERSITY)/Documents/Teaching/CS320/We?
sb/Homeworks and Labs/Main.hs mported from more than or

allowed: an entity can be imported by various routes without conflict. The compiler knows whether entities from different modules are actually the san

